802 research outputs found

    Synthesis of Mono- and Diiron Dithiolene Complexes as Hydrogenase Models by Dithiolene Transfer Reactions, Including the Crystal Structure of [{Ni(S2C2Ph2)}6]

    Get PDF
    The dithiolene transfer reaction between the nickel bis(dithiolene) complex [Ni(S2C2Ph2)2] and iron carbonyls has been re-investigated, and the conditions for the production of the dinuclear product [Fe2(μ-S2C2Ph2)(CO)6] have been optimized. Interception of a purple intermediate, thought to be [Fe(CO)3(S2C2Ph2)], in the reaction of [Fe(CO)5] with [Ni(S2C2Ph2)2] by the addition of PPh3 affords the new dark blue mononuclear complex [Fe(CO)2(PPh3)(S2C2Ph2)] in good yield. The fate of the nickel dithiolene fragments in these reactions has also been established by crystallographic characterization of the hexamer [{Ni(S2C2Ph2)}6] and the trinuclear cluster [Ni3(μ-S2C2Ph2)3(PPh3)2]. The substitution reactions of [Fe2(μ-S2C2Ph2)(CO)6] with PPh3 in the presence of Me3NO to give monosubstituted [Fe2(μ-S2C2Ph2)(CO)5(PPh3)] and disubstituted [Fe2(μ-S2C2Ph2)(CO)4(PPh3)2] are also reported

    The ideal trefoil knot

    Get PDF
    The most tight conformation of the trefoil knot found by the SONO algorithm is presented. Structure of the set of its self-contact points is analyzed.Comment: 11 pages, 8 figure

    Dithiolene transfer to the molybdenum nitrosyl complex [CpMo(CO)2(NO)]: Formation of bimetallic complexes

    Get PDF
    The reaction of the nitrosyl complex [CpMo(CO)2(NO)] (Cp = η-C5H5) with the nickel dithiolene complex [Ni(S2C2Ph2)2] produces the expected dimolybdenum complex [Mo2(NO)2(μ-S2C2Ph2)2Cp2], but only as a minor product (13% yield). The major product (41%) consists of two separable isomers of the tetranuclear complex [Mo2Ni2(NO)2(μ-S2C2Ph2)4Cp2], which comprises two CpMo(NO)Ni(S2C2Ph2)2units joined through bridging sulfur atoms. The isomers differ in the orientation of one dimeric unit in relation to the other. All three compounds have been structurally characterised

    An Inquiry into the Practice of Proving in Low-Dimensional Topology

    Get PDF
    The aim of this article is to investigate specific aspects connected with visualization in the practice of a mathematical subfield: low-dimensional topology. Through a case study, it will be established that visualization can play an epistemic role. The background assumption is that the consideration of the actual practice of mathematics is relevant to address epistemological issues. It will be shown that in low-dimensional topology, justifications can be based on sequences of pictures. Three theses will be defended. First, the representations used in the practice are an integral part of the mathematical reasoning. As a matter of fact, they convey in a material form the relevant transitions and thus allow experts to draw inferential connections. Second, in low-dimensional topology experts exploit a particular type of manipulative imagination which is connected to intuition of two- and three-dimensional space and motor agency. This imagination allows recognizing the transformations which connect different pictures in an argument. Third, the epistemic—and inferential—actions performed are permissible only within a specific practice: this form of reasoning is subject-matter dependent. Local criteria of validity are established to assure the soundness of representationally heterogeneous arguments in low-dimensional topology

    High Temperature Electron Localization in dense He Gas

    Get PDF
    We report new accurate mesasurements of the mobility of excess electrons in high density Helium gas in extended ranges of temperature [(26T77)K][(26\leq T\leq 77) K ] and density [(0.05N12.0)atomsnm3][ (0.05\leq N\leq 12.0) {atoms} \cdot {nm}^{-3}] to ascertain the effect of temperature on the formation and dynamics of localized electron states. The main result of the experiment is that the formation of localized states essentially depends on the relative balance of fluid dilation energy, repulsive electron-atom interaction energy, and thermal energy. As a consequence, the onset of localization depends on the medium disorder through gas temperature and density. It appears that the transition from delocalized to localized states shifts to larger densities as the temperature is increased. This behavior can be understood in terms of a simple model of electron self-trapping in a spherically symmetric square well.Comment: 23 pages, 13 figure

    Expansion of a Bose-Einstein Condensate in an atomic waveguide

    Full text link
    The expansion of a Bose-Einstein condensate in an atomic waveguide is analyzed. We study different regimes of expansion, and identify a transient regime between one-dimensional and three-dimensional dynamics, in which the properties of the condensate and its further expansion can be well explained by reducing the transversal dynamics to a two-level system. The relevance of this regime in current experiments is discussed.Comment: 4 pages, 3 figs, Accepted for publication in Phys. Rev.

    Compaction of Rods: Relaxation and Ordering in Vibrated, Anisotropic Granular Material

    Full text link
    We report on experiments to measure the temporal and spatial evolution of packing arrangements of anisotropic, cylindrical granular material, using high-resolution capacitive monitoring. In these experiments, the particle configurations start from an initially disordered, low-packing-fraction state and under vertical vibrations evolve to a dense, highly ordered, nematic state in which the long particle axes align with the vertical tube walls. We find that the orientational ordering process is reflected in a characteristic, steep rise in the local packing fraction. At any given height inside the packing, the ordering is initiated at the container walls and proceeds inward. We explore the evolution of the local as well as the height-averaged packing fraction as a function of vibration parameters and compare our results to relaxation experiments conducted on spherically shaped granular materials.Comment: 9 pages incl. 7 figure

    Dark energy as a mirage

    Full text link
    Motivated by the observed cosmic matter distribution, we present the following conjecture: due to the formation of voids and opaque structures, the average matter density on the path of the light from the well-observed objects changes from Omega_M ~ 1 in the homogeneous early universe to Omega_M ~ 0 in the clumpy late universe, so that the average expansion rate increases along our line of sight from EdS expansion Ht ~ 2/3 at high redshifts to free expansion Ht ~ 1 at low redshifts. To calculate the modified observable distance-redshift relations, we introduce a generalized Dyer-Roeder method that allows for two crucial physical properties of the universe: inhomogeneities in the expansion rate and the growth of the nonlinear structures. By treating the transition redshift to the void-dominated era as a free parameter, we find a phenomenological fit to the observations from the CMB anisotropy, the position of the baryon oscillation peak, the magnitude-redshift relations of type Ia supernovae, the local Hubble flow and the nucleosynthesis, resulting in a concordant model of the universe with 90% dark matter, 10% baryons, no dark energy, 15 Gyr as the age of the universe and a natural value for the transition redshift z_0=0.35. Unlike a large local void, the model respects the cosmological principle, further offering an explanation for the late onset of the perceived acceleration as a consequence of the forming nonlinear structures. Additional tests, such as quantitative predictions for angular deviations due to an anisotropic void distribution and a theoretical derivation of the model, can vindicate or falsify the interpretation that light propagation in voids is responsible for the perceived acceleration.Comment: 33 pages, 2 figs; v2: minor clarifications, results unchanged; v3: matches the version published in General Relativity and Gravitatio
    corecore